The motor protein myosin-X transports VE-cadherin along filopodia to allow the formation of early endothelial cell-cell contacts.

نویسندگان

  • Sébastien Almagro
  • Claire Durmort
  • Adeline Chervin-Pétinot
  • Stephanie Heyraud
  • Mathilde Dubois
  • Olivier Lambert
  • Camille Maillefaud
  • Elizabeth Hewat
  • Jean Patrick Schaal
  • Philippe Huber
  • Danielle Gulino-Debrac
چکیده

Vascular endothelium (VE), the monolayer of endothelial cells that lines the vascular tree, undergoes damage at the basis of some vascular diseases. Its integrity is maintained by VE-cadherin, an adhesive receptor localized at cell-cell junctions. Here, we show that VE-cadherin is also located at the tip and along filopodia in sparse or subconfluent endothelial cells. We observed that VE-cadherin navigates along intrafilopodial actin filaments. We found that the actin motor protein myosin-X is colocalized and moves synchronously with filopodial VE-cadherin. Immunoprecipitation and pulldown assays confirmed that myosin-X is directly associated with the VE-cadherin complex. Furthermore, expression of a dominant-negative mutant of myosin-X revealed that myosin-X is required for VE-cadherin export to cell edges and filopodia. These features indicate that myosin-X establishes a link between the actin cytoskeleton and VE-cadherin, thereby allowing VE-cadherin transportation along intrafilopodial actin cables. In conclusion, we propose that VE-cadherin trafficking along filopodia using myosin-X motor protein is a prerequisite for cell-cell junction formation. This mechanism may have functional consequences for endothelium repair in pathological settings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cytoskeletal mechanisms of cell–cell junction formation in endothelial cells

The actin cytoskeleton and associated proteins play a vital role in cell-cell adhesion. However, the procedure by which cells establish adherens junctions remains unclear. We investigated the dynamics of cell-cell junction formation and the corresponding architecture of the underlying cytoskeleton in cultured human umbilical vein endothelial cells. We show that the initial interaction between c...

متن کامل

IQGAP1 mediates VE-cadherin-based cell-cell contacts and VEGF signaling at adherence junctions linked to angiogenesis.

OBJECTIVE Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating reactive oxygen species (ROS) production primarily through the VEGF receptor-2 (VEGFR2). One of the initial responses in established vessels to stimulate angiogenesis is loss of vascular endothelial (VE)-cadherin-based cell-cell adhesions; however, little is known about the underlying mechanisms. IQGAP1 is a...

متن کامل

Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin–mediated cell–cell contacts

We recently reported that junctional adhesion molecule (JAM)-C plays a role in leukocyte transendothelial migration. Here, the role of JAM-C in vascular permeability was investigated in vitro and in vivo. As opposed to macrovascular endothelial cells that constitutively expressed JAM-C in cell-cell contacts, in quiescent microvascular endothelial cells, JAM-C localized mainly intracellularly, a...

متن کامل

VE-cadherin interacts with cell polarity protein Pals1 to regulate vascular lumen formation

Blood vessel tubulogenesis requires the formation of stable cell-to-cell contacts and the establishment of apicobasal polarity of vascular endothelial cells. Cell polarity is regulated by highly conserved cell polarity protein complexes such as the Par3-aPKC-Par6 complex and the CRB3-Pals1-PATJ complex, which are expressed by many different cell types and regulate various aspects of cell polari...

متن کامل

Establishment of cell-cell junctions depends on the oligomeric states of VE-cadherin.

Specifically expressed at intercellular adherens junctions of endothelial cells, VE-cadherin is a receptor that exhibits particular self-association properties. Indeed, in vitro studies demonstrated that the extracellular part of VE-cadherin elaborates Ca(++)-dependent hexameric structures. We hypothesized that this assembly could be at the basis of a new cadherin-mediated cell-cell adhesion me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 30 7  شماره 

صفحات  -

تاریخ انتشار 2010